licher Verdünnung von verschiedenen Konzentrationsbereichen aus extrapoliert wurde.

Abb. 8. Partielles Molvolumen von Salzsäure in Abhängigkeit von der Ionenstärke nach Dichtemessungen von Wirth²⁸⁾.

> I = HCl-Lösungen II = NaCl-Lösungen IIa,b = NaCl/HCl-Lösungen

Die Ausgangspunkte der Kurvenäste a und b auf II geben die jeweilige konstant gehaltene Konzentration von Natriumchlorid an.

Dies wird deutlich aus Abb. 9, in der die von Wirth²⁸⁾ gefundenen scheinbaren partiellen Molvolumina mit neuen Daten von Dunn⁴⁵⁾ verglichen sind. Der von Wirth²⁸⁾ beobachtete lineare Zusammenhang

 Abb. 9. Scheinbares Molvolumen von Salzsäure in Abhängigkeit von der HCl-Konzentration nach dilatometrischen Messungen von Dunn⁴⁵⁾ (0) und Dichtemessungen von Wirth²⁸⁾ (□). (Gestrichelt: Grenzgesetz nach Debye-Hückel)

zwischen dem scheinbaren Molvolumen $\mathscr{O}_{V,HC1}$ und der Wurzel aus der HCl-Konzentration, entspricht den in die Tabellenwerke^{z.B.26)} aufgenommenen Werten von $\mathscr{O}_{V,HC1}^{O} = 18.07 \text{ cm}^3 \cdot \text{Mol}^{-1}$ für das scheinbare Molvolumen bei unendlicher Verdünnung, und S_{V,HC1} = 0.95 für die Steigung der empirischen Gleichung²⁴⁾

 $\mathscr{D}_{V} = \mathscr{D}_{V}^{O} + S_{V} \sqrt{c} \qquad (42) .$

Die in Abb. 9 gestrichelt eingezeichnete Gerade entspricht der theoretischen Grenzneigung für die Konzentrationsabhängigkeit des

- 48 -